Page 1 of 1

segmentation fault while running bench.Hg

Posted: Tue May 04, 2010 2:28 pm
by aplahemant
Hello,

I get a segmentation fault while running the bench.Hg case as given in the benchmarks. The output is as follows:


vasp.5.2.2 15Apr09 complex
POSCAR found : 1 types and 50 ions
LDA part: xc-table for Ceperly-Alder, standard interpolation

-----------------------------------------------------------------------------
| |
| W W AA RRRRR N N II N N GGGG !!! |
| W W A A R R NN N II NN N G G !!! |
| W W A A R R N N N II N N N G !!! |
| W WW W AAAAAA RRRRR N N N II N N N G GGG ! |
| WW WW A A R R N NN II N NN G G |
| W W A A R R N N II N N GGGG !!! |
| |
| Your FFT grids (NGX,NGY,NGZ) are not sufficient for an accurate |
| calculation. |
| The results might be wrong |
| good settings for NGX NGY and NGZ are |
| 31 31 and 31 |
| Mind: This setting results in a small but reasonable wrap around error |
| It is also necessary to adjust these values to the FFT routines you use|
| |
-----------------------------------------------------------------------------

POSCAR, INCAR and KPOINTS ok, starting setup
WARNING: small aliasing (wrap around) errors must be expected
FFT: planning ...( 1 )
reading WAVECAR

All results refer to a run over all bands and one k-point
VNLACC non local part of H
PROJ calculate projection of all bands (contains FFTWAV)
RACC non local part of H in real space (contains FFTEXT)
RPRO calculate projection of all bands in real space
both calls contain on FFT (to be subtracted)
FFTWAV FFT of a wavefunction to real space
FFTEXT FFT to real space
ECCP internal information only (subtract FFTWAV)
POTLOK update of local potential (including one FFT)
SETDIJ calculate stregth of US PP
ORTHCH gramm-schmidt orth. applying Choleski decomp.
LINCOM unitary transformation of wavefunctions
LINUP upper triangle transformation of wavefunctions
ORTHON orthogonalisation of one band to all others
STUFAK: cpu time 0.02: real time 0.02
POTLOK : cpu time 0.04: real time 0.04
FORLOC: cpu time 0.05: real time 0.05
CHSP : cpu time 0.50: real time 0.50
DEPLE : cpu time 0.04: real time 0.04
RSPHER: cpu time 0.01: real time 0.01
RACC: cpu time 1.15: real time 1.15
RPRO : cpu time 1.06: real time 1.06
FFTWAV: cpu time 0.48: real time 0.48
FFTINI: cpu time 0.02: real time 0.02
FFT3DF: cpu time 0.47: real time 0.47
FFTFB : cpu time 0.92: real time 0.92
FFTEXT : cpu time 0.48: real time 0.47
ECCP : cpu time 0.58: real time 0.58
SETDIJ : cpu time 0.03: real time 0.03
SETPAW : cpu time 0.00: real time 0.00
ORTHCH: cpu time 1.49: real time 1.49
EDDIAG: cpu time 3.46: real time 3.46
LINCOM: cpu time 1.18: real time 1.18
LINCOM: cpu time 1.34: real time 1.34
LINUP : cpu time 0.72: real time 0.71
forrtl: severe (174): SIGSEGV, segmentation fault occurred


The Makefile used to create a serial executable is as follows:


.SUFFIXES: .inc .f .f90 .F
SUFFIX=.f90

#-----------------------------------------------------------------------
# fortran compiler and linker
#-----------------------------------------------------------------------
FC=ifort-11.1
# fortran linker
FCL=$(FC)


#-----------------------------------------------------------------------
# whereis CPP ?? (I need CPP, can't use gcc with proper options)
# that's the location of gcc for SUSE 5.3
#
# CPP_ = /usr/lib/gcc-lib/i486-linux/2.7.2/cpp -P -C
#
# that's probably the right line for some Red Hat distribution:
#
# CPP_ = /usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3/cpp -P -C
#
# SUSE X.X, maybe some Red Hat distributions:

CPP_ = ./preprocess <$*.F | /usr/bin/cpp -P -C -traditional >$*$(SUFFIX)

#-----------------------------------------------------------------------
# possible options for CPP:
# NGXhalf charge density reduced in X direction
# wNGXhalf gamma point only reduced in X direction
# avoidalloc avoid ALLOCATE if possible
# PGF90 work around some for some PGF90 / IFC bugs
# CACHE_SIZE 1000 for PII,PIII, 5000 for Athlon, 8000-12000 P4, PD
# RPROMU_DGEMV use DGEMV instead of DGEMM in RPRO (depends on used BLAS)
# RACCMU_DGEMV use DGEMV instead of DGEMM in RACC (depends on used BLAS)
#-----------------------------------------------------------------------

CPP = $(CPP_) -DHOST=\"LinuxIFC\" \
-Dkind8 -DCACHE_SIZE=8000 -DPGF90 -Davoidalloc -DNGXhalf \
-DwnGXhalf -DRACCMU_DGEMV
# -DwnGXhalf -DRPROMU_DGEMV -DRACCMU_DGEMV

#-----------------------------------------------------------------------
# general fortran flags (there must a trailing blank on this line)
# byterecl is strictly required for ifc, since otherwise
# the WAVECAR file becomes huge
#-----------------------------------------------------------------------

FFLAGS = -FR -lowercase -assume byterecl
# ifc.9.1, ifc.10.1 recommended
OFLAG=-O2

OFLAG_HIGH = $(OFLAG)
OBJ_HIGH =
OBJ_NOOPT =
DEBUG = -FR -O2
INLINE = $(OFLAG)

#-----------------------------------------------------------------------
# the following lines specify the position of BLAS and LAPACK
# VASP works fastest with the libgoto library
# so that's what we recommend
#-----------------------------------------------------------------------

# mkl.10.0
# set -DRPROMU_DGEMV -DRACCMU_DGEMV in the CPP lines
#BLAS=-L/opt/intel/mkl100/lib/em64t -lmkl -lpthread
BLAS=-L/data/home/opt/intel/mkl91/lib/em64t -lmkl_em64t -lguide -lpthread
# even faster for VASP Kazushige Goto's BLAS
# http://www.cs.utexas.edu/users/kgoto/signup_first.html
# parallel goto version requires sometimes -libverbs
#BLAS= /opt/libs/libgoto/libgoto.so

# LAPACK, simplest use vasp.5.lib/lapack_double
#LAPACK= ../vasp.5.lib/lapack_double.o

# use the mkl Intel lapack
#LAPACK= -lmkl_lapack
LAPACK= -L/data/home/opt/intel/mkl91/lib/em64t/ -lmkl_lapack
#-----------------------------------------------------------------------

LIB = -L../vasp.5.lib -ldmy \
../vasp.5.lib/linpack_double.o $(LAPACK) \
$(BLAS)

# options for linking, nothing is required (usually)
LINK =

#-----------------------------------------------------------------------
# fft libraries:
# VASP.5.2 can use fftw.3.1.X (http://www.fftw.org)
# since this version is faster on P4 machines, we recommend to use it
#-----------------------------------------------------------------------

FFT3D = fft3dfurth.o fft3dlib.o

# alternatively: fftw.3.1.X is slighly faster and should be used if available
#FFT3D = fftw3d.o fft3dlib.o /opt/libs/fftw-3.1.2/lib/libfftw3.a

BASIC= symmetry.o symlib.o lattlib.o random.o

SOURCE= base.o mpi.o smart_allocate.o xml.o \
constant.o jacobi.o main_mpi.o scala.o \
asa.o lattice.o poscar.o ini.o xclib.o xclib_grad.o \
radial.o pseudo.o mgrid.o gridq.o ebs.o \
mkpoints.o wave.o wave_mpi.o wave_high.o \
$(BASIC) nonl.o nonlr.o nonl_high.o dfast.o choleski2.o \
mix.o hamil.o xcgrad.o xcspin.o potex1.o potex2.o \
metagga.o constrmag.o cl_shift.o relativistic.o LDApU.o \
paw_base.o egrad.o pawsym.o pawfock.o pawlhf.o paw.o \
mkpoints_full.o charge.o dipol.o pot.o \
dos.o elf.o tet.o tetweight.o hamil_rot.o \
steep.o chain.o dyna.o sphpro.o us.o core_rel.o \
aedens.o wavpre.o wavpre_noio.o broyden.o \
dynbr.o rmm-diis.o reader.o writer.o tutor.o xml_writer.o \
brent.o stufak.o fileio.o opergrid.o stepver.o \
chgloc.o fast_aug.o fock.o mkpoints_change.o sym_grad.o \
mymath.o internals.o dimer_heyden.o dvvtrajectory.o vdwforcefield.o \
hamil_high.o nmr.o force.o \
pead.o subrot.o subrot_scf.o pwlhf.o gw_model.o optreal.o davidson.o \
electron.o rot.o electron_all.o shm.o pardens.o paircorrection.o \
optics.o constr_cell_relax.o stm.o finite_diff.o elpol.o \
hamil_lr.o rmm-diis_lr.o subrot_cluster.o subrot_lr.o \
lr_helper.o hamil_lrf.o elinear_response.o ilinear_response.o \
linear_optics.o linear_response.o \
setlocalpp.o wannier.o electron_OEP.o electron_lhf.o twoelectron4o.o \
ratpol.o screened_2e.o wave_cacher.o chi_base.o wpot.o local_field.o \
ump2.o bse.o acfdt.o chi.o sydmat.o

INC=

vasp: $(SOURCE) $(FFT3D) $(INC) main.o
rm -f vasp
$(FCL) -o vasp main.o $(SOURCE) $(FFT3D) $(LIB) $(LINK)
makeparam: $(SOURCE) $(FFT3D) makeparam.o main.F $(INC)
$(FCL) -o makeparam $(LINK) makeparam.o $(SOURCE) $(FFT3D) $(LIB)
zgemmtest: zgemmtest.o base.o random.o $(INC)
$(FCL) -o zgemmtest $(LINK) zgemmtest.o random.o base.o $(LIB)
dgemmtest: dgemmtest.o base.o random.o $(INC)
$(FCL) -o dgemmtest $(LINK) dgemmtest.o random.o base.o $(LIB)
ffttest: base.o smart_allocate.o mpi.o mgrid.o random.o ffttest.o $(FFT3D) $(INC)
$(FCL) -o ffttest $(LINK) ffttest.o mpi.o mgrid.o random.o smart_allocate.o base.o $(FFT3D) $(LIB)
kpoints: $(SOURCE) $(FFT3D) makekpoints.o main.F $(INC)
$(FCL) -o kpoints $(LINK) makekpoints.o $(SOURCE) $(FFT3D) $(LIB)

clean:
-rm -f *.g *.f *.o *.L *.mod ; touch *.F

main.o: main$(SUFFIX)
$(FC) $(FFLAGS)$(DEBUG) $(INCS) -c main$(SUFFIX)
xcgrad.o: xcgrad$(SUFFIX)
$(FC) $(FFLAGS) $(INLINE) $(INCS) -c xcgrad$(SUFFIX)
xcspin.o: xcspin$(SUFFIX)
$(FC) $(FFLAGS) $(INLINE) $(INCS) -c xcspin$(SUFFIX)

makeparam.o: makeparam$(SUFFIX)
$(FC) $(FFLAGS)$(DEBUG) $(INCS) -c makeparam$(SUFFIX)

makeparam$(SUFFIX): makeparam.F main.F

base.o: base.inc base.F
mgrid.o: mgrid.inc mgrid.F
constant.o: constant.inc constant.F
lattice.o: lattice.inc lattice.F
setex.o: setexm.inc setex.F
pseudo.o: pseudo.inc pseudo.F
poscar.o: poscar.inc poscar.F
mkpoints.o: mkpoints.inc mkpoints.F
wave.o: wave.inc wave.F
nonl.o: nonl.inc nonl.F
nonlr.o: nonlr.inc nonlr.F

$(OBJ_HIGH):
$(CPP)
$(FC) $(FFLAGS) $(OFLAG_HIGH) $(INCS) -c $*$(SUFFIX)
$(OBJ_NOOPT):
$(CPP)
$(FC) $(FFLAGS) $(INCS) -c $*$(SUFFIX)

fft3dlib_f77.o: fft3dlib_f77.F
$(CPP)
$(F77) $(FFLAGS_F77) -c $*$(SUFFIX)

.F.o:
$(CPP)
$(FC) $(FFLAGS) $(OFLAG) $(INCS) -c $*$(SUFFIX)
.F$(SUFFIX):
$(CPP)
$(SUFFIX).o:
$(FC) $(FFLAGS) $(OFLAG) $(INCS) -c $*$(SUFFIX)

fft3dlib.o : fft3dlib.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)
fft3dfurth.o : fft3dfurth.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

radial.o : radial.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

symlib.o : symlib.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

symmetry.o : symmetry.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

wave_mpi.o : wave_mpi.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

wave.o : wave.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

dynbr.o : dynbr.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

asa.o : asa.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

broyden.o : broyden.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)

us.o : us.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

LDApU.o : LDApU.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)


Few other test cases that i am running also give a segmentation fault. I guess they are all related and would appreciate any help in solving the problem.

Thanks in advance.

hemant.
The rest of the Makefile is unchanged

segmentation fault while running bench.Hg

Posted: Wed Jun 30, 2010 12:52 pm
by admin
please check if your account has any limits in memory, stack size,... by
ulimit -a
The benchmarks are very small runs, so they should run without any problems on a single-CPU desktop PC, unless the users' accounts are set up in a very restricted manner (please check with your sys admin)