Page 1 of 1

Non-Collinear Execution Problem on Vasp 5.2

Posted: Tue Apr 27, 2010 7:27 pm
by enlvamp
Dear Friends from Vasp forum, as well know to you all, to make a vasp 4.6 or older version non-collinear calculation was just necessary to take out the option -DNGXhalf , if it were to be run in serial mode, or take out the option -DNGZhalf for parallel mode in CPP line.
Unfortunately on vasp 5.2 we havent been able ro run the executable. it starts but after a few seconds stops without a clear reason. The Makefile were using works very good, and it's based on the 4.6 makefile which we've been using for years.
Has anyone come to this problem ? if so, how was it resolved ?
Thanks in advance .
Im attaching the makefile

Tiago from Institute of Physics, Federal University of Uberlândia - Brazil

Code: Select all

 .SUFFIXES: .inc .f .f90 .F
#-----------------------------------------------------------------------
# Makefile for Intel Fortran compiler for Pentium/Athlon/Opteron 
# bases systems
# we recommend this makefile for both Intel as well as AMD systems
# for AMD based systems appropriate BLAS and fftw libraries are
# however mandatory (whereas they are optional for Intel platforms)
#
# The makefile was tested only under Linux on Intel and AMD platforms
# the following compiler versions have been tested:
#  - ifc.7.1  works stable somewhat slow but reliably
#  - ifc.8.1  fails to compile the code properly
#  - ifc.9.1  recommended (both for 32 and 64 bit)
#  - ifc.10.1 partially recommended (both for 32 and 64 bit)
#             tested build 20080312 Package ID: l_fc_p_10.1.015
#             the gamma only mpi version can not be compiles
#             using ifc.10.1
#
# it might be required to change some of library pathes, since
# LINUX installation vary a lot
# Hence check ***ALL*** options in this makefile very carefully
#-----------------------------------------------------------------------
#
# BLAS must be installed on the machine
# there are several options:
# 1) very slow but works:
#   retrieve the lapackage from ftp.netlib.org
#   and compile the blas routines (BLAS/SRC directory)
#   please use g77 or f77 for the compilation. When I tried to
#   use pgf77 or pgf90 for BLAS, VASP hang up when calling
#   ZHEEV  (however this was with lapack 1.1 now I use lapack 2.0)
# 2) more desirable: get an optimized BLAS 
#
# the two most reliable packages around are presently:
# 2a) Intels own optimised BLAS (PIII, P4, PD, PC2, Itanium)
#     http://developer.intel.com/software/products/mkl/
#   this is really excellent, if you use Intel CPU's
#
# 2b) probably fastest SSE2 (4 GFlops on P4, 2.53 GHz, 16 GFlops PD, 
#     around 30 GFlops on Quad core)
#   Kazushige Goto's BLAS
#   http://www.cs.utexas.edu/users/kgoto/signup_first.html
#   http://www.tacc.utexas.edu/resources/software/
#
#-----------------------------------------------------------------------

# all CPP processed fortran files have the extension .f90
SUFFIX=.f90

#-----------------------------------------------------------------------
# fortran compiler and linker
#-----------------------------------------------------------------------
FC=ifc 
# fortran linker
FCL=$(FC)


#-----------------------------------------------------------------------
# whereis CPP ?? (I need CPP, can't use gcc with proper options)
# that's the location of gcc for SUSE 5.3
#
#  CPP_   =  /usr/lib/gcc-lib/i486-linux/2.7.2/cpp -P -C 
#
# that's probably the right line for some Red Hat distribution:
#
#  CPP_   =  /usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3/cpp -P -C
#
#  SUSE X.X, maybe some Red Hat distributions:

CPP_ =  ./preprocess <$*.F | /usr/bin/cpp -P -C -traditional >$*$(SUFFIX)

#-----------------------------------------------------------------------
# possible options for CPP:
# NGXhalf             charge density   reduced in X direction
# wNGXhalf            gamma point only reduced in X direction
# avoidalloc          avoid ALLOCATE if possible
# PGF90               work around some for some PGF90 / IFC bugs
# CACHE_SIZE          1000 for PII,PIII, 5000 for Athlon, 8000-12000 P4, PD
# RPROMU_DGEMV        use DGEMV instead of DGEMM in RPRO (depends on used BLAS)
# RACCMU_DGEMV        use DGEMV instead of DGEMM in RACC (depends on used BLAS)
#-----------------------------------------------------------------------

CPP     = $(CPP_)  -DHOST=\"LinuxIFC\" \
          -Dkind8 -DCACHE_SIZE=12000 -DPGF90 -Davoidalloc  \
          -DRPROMU_DGEMV  -DRACCMU_DGEMV -DscaLAPACK

#-----------------------------------------------------------------------
# general fortran flags  (there must a trailing blank on this line)
# byterecl is strictly required for ifc, since otherwise
# the WAVECAR file becomes huge
#-----------------------------------------------------------------------

FFLAGS =-I/opt/intel/mkl/10.2.1.017/include/fftw   -FR -lowercase -assume byterecl 

#-----------------------------------------------------------------------
# optimization
# we have tested whether higher optimisation improves performance
# -axK  SSE1 optimization,  but also generate code executable on all mach.
#       xK improves performance somewhat on XP, and a is required in order
#       to run the code on older Athlons as well
# -xW   SSE2 optimization
# -axW  SSE2 optimization,  but also generate code executable on all mach.
# -tpp6 P3 optimization
# -tpp7 P4 optimization
#-----------------------------------------------------------------------

# ifc.9.1, ifc.10.1 recommended
OFLAG=-O1

OFLAG_HIGH = $(OFLAG)
OBJ_HIGH = 
OBJ_NOOPT = 
DEBUG  = -FR -O0
INLINE = $(OFLAG)

#-----------------------------------------------------------------------
# the following lines specify the position of BLAS  and LAPACK
# VASP works fastest with the libgoto library
# so that's what we recommend
#-----------------------------------------------------------------------

# mkl.10.0
# set -DRPROMU_DGEMV  -DRACCMU_DGEMV in the CPP lines
#BLAS=-L/opt/intel/mkl100/lib/em64t -lmkl -lpthread

# even faster for VASP Kazushige Goto's BLAS
# http://www.cs.utexas.edu/users/kgoto/signup_first.html
# parallel goto version requires sometimes -libverbs
#BLAS=  /opt/libs/libgoto/libgoto.so

LAPACK=-L/opt/intel/mkl/10.2.1.017/lib/em64t -lmkl_intel_lp64 -lmkl_sequential -lmkl_core

#-----------------------------------------------------------------------

#LIB  = -L../vasp.5.lib -ldmy \
#     ../vasp.5.lib/linpack_double.o $(LAPACK) \
#     $(BLAS)

# options for linking, nothing is required (usually)
LINK    = 

#-----------------------------------------------------------------------
# fft libraries:
# VASP.5.2 can use fftw.3.1.X (http://www.fftw.org)
# since this version is faster on P4 machines, we recommend to use it
#-----------------------------------------------------------------------

FFT3D   = fft3dfurth.o fft3dlib.o

# alternatively: fftw.3.1.X is slighly faster and should be used if available
#FFT3D   = fftw3d.o fft3dlib.o   /opt/libs/fftw-3.1.2/lib/libfftw3.a


#=======================================================================
# MPI section, uncomment the following lines until 
#    general  rules and compile lines
# presently we recommend OPENMPI, since it seems to offer better
# performance than lam or mpich
# 
# !!! Please do not send me any queries on how to install MPI, I will
# certainly not answer them !!!!
#=======================================================================
#-----------------------------------------------------------------------
# fortran linker for mpi
#-----------------------------------------------------------------------

FC=mpif90
FCL=$(FC)

#-----------------------------------------------------------------------
# additional options for CPP in parallel version (see also above):
# NGZhalf               charge density   reduced in Z direction
# wNGZhalf              gamma point only reduced in Z direction
# scaLAPACK             use scaLAPACK (usually slower on 100 Mbit Net)
#-----------------------------------------------------------------------

CPP    = $(CPP_) -DMPI  -DHOST=\"LinuxIFC\" -DIFC \
     -Dkind8 -DCACHE_SIZE=8000 -DPGF90 -Davoidalloc \
     -DMPI_BLOCK=8000 -DRPROMU_DGEMV  -DRACCMU_DGEMV -DscaLAPACK

#-----------------------------------------------------------------------
# location of SCALAPACK
# if you do not use SCALAPACK simply leave that section commented out
#-----------------------------------------------------------------------

BLACS=/opt/intel/mkl/10.2.1.017/lib/em64t/libmkl_blacs_intelmpi_lp64.a
SCA= /opt/intel/mkl/10.2.1.017/lib/em64t/libmkl_scalapack_lp64.a $(BLACS)

#-----------------------------------------------------------------------
# libraries for mpi
#-----------------------------------------------------------------------

LIB     = -L../vasp.5.lib -ldmy  \
      ../vasp.5.lib/linpack_double.o $(LAPACK) \
      $(SCA) #$(BLAS)

# FFT: fftmpi.o with fft3dlib of Juergen Furthmueller
#FFT3D   = fftmpi.o fftmpi_map.o fft3dfurth.o fft3dlib.o 

# alternatively: fftw.3.1.X is slighly faster and should be used if available
FFT3D   = fftmpi.o fftmpi_map.o fftw3d.o fft3dlib.o /opt/intel/mkl/10.2.1.017/interfaces/fftw3xf/libfftw3xf_gnu.a 
#/usr/local/lib/libfftw3.a
 
 

#-----------------------------------------------------------------------
# general rules and compile lines
#-----------------------------------------------------------------------
BASIC=   symmetry.o symlib.o   lattlib.o  random.o   

SOURCE=  base.o     mpi.o      smart_allocate.o      xml.o  \
         constant.o jacobi.o   main_mpi.o  scala.o   \
         asa.o      lattice.o  poscar.o   ini.o       xclib.o     xclib_grad.o \
         radial.o   pseudo.o   mgrid.o    gridq.o     ebs.o  \
         mkpoints.o wave.o     wave_mpi.o  wave_high.o  \
         $(BASIC)   nonl.o     nonlr.o    nonl_high.o dfast.o    choleski2.o \
         mix.o      hamil.o    xcgrad.o   xcspin.o    potex1.o   potex2.o  \
         metagga.o constrmag.o cl_shift.o relativistic.o LDApU.o \
         paw_base.o egrad.o    pawsym.o   pawfock.o  pawlhf.o    paw.o   \
         mkpoints_full.o       charge.o   dipol.o    pot.o  \
         dos.o      elf.o      tet.o      tetweight.o hamil_rot.o \
         steep.o    chain.o    dyna.o     sphpro.o    us.o  core_rel.o \
         aedens.o   wavpre.o   wavpre_noio.o broyden.o \
         dynbr.o    rmm-diis.o reader.o   writer.o   tutor.o xml_writer.o \
         brent.o    stufak.o   fileio.o   opergrid.o stepver.o  \
         chgloc.o   fast_aug.o fock.o     mkpoints_change.o sym_grad.o \
         mymath.o   internals.o dimer_heyden.o dvvtrajectory.o vdwforcefield.o \
         hamil_high.o nmr.o    force.o \
         pead.o     subrot.o   subrot_scf.o pwlhf.o  gw_model.o optreal.o   davidson.o \
         electron.o rot.o  electron_all.o shm.o    pardens.o  paircorrection.o \
         optics.o   constr_cell_relax.o   stm.o    finite_diff.o elpol.o    \
         hamil_lr.o rmm-diis_lr.o  subrot_cluster.o subrot_lr.o \
         lr_helper.o hamil_lrf.o   elinear_response.o ilinear_response.o \
         linear_optics.o linear_response.o   \
         setlocalpp.o  wannier.o electron_OEP.o electron_lhf.o twoelectron4o.o \
         ratpol.o screened_2e.o wave_cacher.o chi_base.o wpot.o local_field.o \
         ump2.o bse.o acfdt.o chi.o sydmat.o 

INC=

vasp-so: $(SOURCE) $(FFT3D) $(INC) main.o 
	rm -f vasp-so
	$(FCL) -o vasp-so main.o  $(SOURCE)   $(FFT3D) $(LIB) $(LINK)
makeparam: $(SOURCE) $(FFT3D) makeparam.o main.F $(INC)
	$(FCL) -o makeparam  $(LINK) makeparam.o $(SOURCE) $(FFT3D) $(LIB)
zgemmtest: zgemmtest.o base.o random.o $(INC)
	$(FCL) -o zgemmtest $(LINK) zgemmtest.o random.o base.o $(LIB)
dgemmtest: dgemmtest.o base.o random.o $(INC)
	$(FCL) -o dgemmtest $(LINK) dgemmtest.o random.o base.o $(LIB) 
ffttest: base.o smart_allocate.o mpi.o mgrid.o random.o ffttest.o $(FFT3D) $(INC)
	$(FCL) -o ffttest $(LINK) ffttest.o mpi.o mgrid.o random.o smart_allocate.o base.o $(FFT3D) $(LIB)
kpoints: $(SOURCE) $(FFT3D) makekpoints.o main.F $(INC)
	$(FCL) -o kpoints $(LINK) makekpoints.o $(SOURCE) $(FFT3D) $(LIB)

clean:	
	-rm -f *.g *.f *.o *.L *.mod ; touch *.F

main.o: main$(SUFFIX)
	$(FC) $(FFLAGS)$(DEBUG)  $(INCS) -c main$(SUFFIX)
xcgrad.o: xcgrad$(SUFFIX)
	$(FC) $(FFLAGS) $(INLINE)  $(INCS) -c xcgrad$(SUFFIX)
xcspin.o: xcspin$(SUFFIX)
	$(FC) $(FFLAGS) $(INLINE)  $(INCS) -c xcspin$(SUFFIX)

makeparam.o: makeparam$(SUFFIX)
	$(FC) $(FFLAGS)$(DEBUG)  $(INCS) -c makeparam$(SUFFIX)

makeparam$(SUFFIX): makeparam.F main.F 
#
# MIND: I do not have a full dependency list for the include
# and MODULES: here are only the minimal basic dependencies
# if one strucuture is changed then touch_dep must be called
# with the corresponding name of the structure
#
base.o: base.inc base.F
mgrid.o: mgrid.inc mgrid.F
constant.o: constant.inc constant.F
lattice.o: lattice.inc lattice.F
setex.o: setexm.inc setex.F
pseudo.o: pseudo.inc pseudo.F
poscar.o: poscar.inc poscar.F
mkpoints.o: mkpoints.inc mkpoints.F
wave.o: wave.inc wave.F
nonl.o: nonl.inc nonl.F
nonlr.o: nonlr.inc nonlr.F

$(OBJ_HIGH):
	$(CPP)
	$(FC) $(FFLAGS) $(OFLAG_HIGH) $(INCS) -c $*$(SUFFIX)
$(OBJ_NOOPT):
	$(CPP)
	$(FC) $(FFLAGS) $(INCS) -c $*$(SUFFIX)

fft3dlib_f77.o: fft3dlib_f77.F
	$(CPP)
	$(F77) $(FFLAGS_F77) -c $*$(SUFFIX)

.F.o:
	$(CPP)
	$(FC) $(FFLAGS) $(OFLAG) $(INCS) -c $*$(SUFFIX)
.F$(SUFFIX):
	$(CPP)
$(SUFFIX).o:
	$(FC) $(FFLAGS) $(OFLAG) $(INCS) -c $*$(SUFFIX)

# special rules
#-----------------------------------------------------------------------
# these special rules are cummulative (that is once failed
#   in one compiler version, stays in the list forever)
# -tpp5|6|7 P, PII-PIII, PIV
# -xW use SIMD (does not pay of on PII, since fft3d uses double prec)
# all other options do no affect the code performance since -O1 is used

fft3dlib.o : fft3dlib.F
	$(CPP)
	$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)
fft3dfurth.o : fft3dfurth.F
	$(CPP)
	$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

radial.o : radial.F
	$(CPP)
	$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

symlib.o : symlib.F
	$(CPP)
	$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

symmetry.o : symmetry.F
	$(CPP)
	$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

wave_mpi.o : wave_mpi.F
	$(CPP)
	$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

wave.o : wave.F
	$(CPP)
	$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

dynbr.o : dynbr.F
	$(CPP)
	$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

asa.o : asa.F
	$(CPP)
	$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

broyden.o : broyden.F
	$(CPP)
	$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)

us.o : us.F
	$(CPP)
	$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

LDApU.o : LDApU.F
	$(CPP)
	$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)
 

Non-Collinear Execution Problem on Vasp 5.2

Posted: Thu Apr 29, 2010 2:30 pm
by admin
if there are no useful hints on why the job crashed, please check whether you may have memory or stack size problems:
1) run a very small cell with non-collinear setup just to test (eg 2 Fe atoms,...) if that works, the executable itself is ok, then, next
2) please check if ulimit -s returns unlimited as output. If it does not, please add the line
ulimit -s unlimited
in the .bashrc file (or the rc file of the sehll you use)

Non-Collinear Execution Problem on Vasp 5.2

Posted: Tue May 04, 2010 6:46 pm
by enlvamp
Thanks for your reply Head admin, but unfortunately we didn't got sucess [:(]
I found out thats a matter of memory problem and maybe something else because if i reduce the number of plane waves considerably it works, and by the way, do you know whats the mining of the option -DMPI_BLOCK in cpp line ?

Non-Collinear Execution Problem on Vasp 5.2

Posted: Thu May 06, 2010 2:38 pm
by admin
alternatively, you can also increase the number of parallel processors on which you run the job, the memory is distributed over the nodes.

Non-Collinear Execution Problem on Vasp 5.2

Posted: Mon May 10, 2010 7:11 pm
by enlvamp
Unfortunately it's not working, dont know what to do, i re-did all the stuff again downloaded the open libs (lapack, blacs, blas, scalapack) to check if the problem was with my mkl , compiled all the libs apart and them changed the makefile and it compiled but didn't run.