why it is not correct?

Queries about input and output files, running specific calculations, etc.


Moderators: Global Moderator, Moderator

Post Reply
Message
Author
ljx2009
Newbie
Newbie
Posts: 4
Joined: Mon Jun 07, 2010 7:25 am

why it is not correct?

#1 Post by ljx2009 » Mon Jun 07, 2010 8:53 am

I use B3LYP to optimize my system, but the calculation can't continue. I don't know why? Now I give my INCAR and OUTCAR files.
INCAR:
System=Z
ALGO=Fast
ISTART=0
ISMEAR=0
SIGMA=0.1
IBRION=2
GGA=B3
ISPIN=2
ISIF=2
EDIFF=1.0E-05
EDIFFG=-0.02
NSW=150
ENCUT=400
NPAR=8
NELM=100
VOSKOWN=1
LREAL=Auto
OUTCAR
vasp.5.2.2 15Apr09 complex
executed on LinuxIFC date 2010.06.07 16:24:25
running on 8 nodes
distr: one band on 1 nodes, 8 groups


--------------------------------------------------------------------------------------------------------


INCAR:
POTCAR: PAW_PBE O 08Apr2002
POTCAR: PAW_PBE Zn 06Sep2000
POTCAR: PAW_PBE O 08Apr2002
VRHFIN =O: s2p4
LEXCH = B3
EATOM = 432.3788 eV, 31.7789 Ry

TITEL = PAW_PBE O 08Apr2002
LULTRA = F use ultrasoft PP ?
IUNSCR = 0 unscreen: 0-lin 1-nonlin 2-no
RPACOR = .000 partial core radius
POMASS = 16.000; ZVAL = 6.000 mass and valenz
RCORE = 1.520 outmost cutoff radius
RWIGS = 1.550; RWIGS = .820 wigner-seitz radius (au A)
ENMAX = 400.000; ENMIN = 300.000 eV
ICORE = 2 local potential
LCOR = T correct aug charges
LPAW = T paw PP
EAUG = 605.392
DEXC = .000
RMAX = 2.264 core radius for proj-oper
RAUG = 1.300 factor for augmentation sphere
RDEP = 1.550 radius for radial grids
QCUT = -5.520; QGAM = 11.041 optimization parameters

Description
l E TYP RCUT TYP RCUT
0 .000 23 1.200
0 -.700 23 1.200
1 .000 23 1.520
1 .600 23 1.520
2 .000 7 1.500
local pseudopotential read in
atomic valenz-charges read in
non local Contribution for L= 0 read in
real space projection operators read in
non local Contribution for L= 0 read in
real space projection operators read in
non local Contribution for L= 1 read in
real space projection operators read in
non local Contribution for L= 1 read in
real space projection operators read in
PAW grid and wavefunctions read in

number of l-projection operators is LMAX = 4
number of lm-projection operators is LMMAX = 8

POTCAR: PAW_PBE Zn 06Sep2000
VRHFIN =Zn: d10 p2
LEXCH = B3
EATOM = 1749.0928 eV, 128.5547 Ry

TITEL = PAW_PBE Zn 06Sep2000
LULTRA = F use ultrasoft PP ?
IUNSCR = 1 unscreen: 0-lin 1-nonlin 2-no
RPACOR = 2.000 partial core radius
POMASS = 65.390; ZVAL = 12.000 mass and valenz
RCORE = 2.300 outmost cutoff radius
RWIGS = 2.400; RWIGS = 1.270 wigner-seitz radius (au A)
ENMAX = 276.727; ENMIN = 207.545 eV
RCLOC = 1.828 cutoff for local pot
LCOR = T correct aug charges
LPAW = T paw PP
EAUG = 575.892
DEXC = -.003
RMAX = 2.772 core radius for proj-oper
RAUG = 1.300 factor for augmentation sphere
RDEP = 2.324 radius for radial grids
QCUT = -4.510; QGAM = 9.020 optimization parameters

Description
l E TYP RCUT TYP RCUT
2 .000 23 2.300
2 .000 23 2.300
0 .000 23 2.300
0 .000 23 2.300
1 -.200 23 2.300
1 .000 23 2.300
3 .000 7 .000
local pseudopotential read in
partial core-charges read in
atomic valenz-charges read in
non local Contribution for L= 2 read in
real space projection operators read in
non local Contribution for L= 2 read in
real space projection operators read in
non local Contribution for L= 0 read in
real space projection operators read in
non local Contribution for L= 0 read in
real space projection operators read in
non local Contribution for L= 1 read in
real space projection operators read in
non local Contribution for L= 1 read in
real space projection operators read in
PAW grid and wavefunctions read in

number of l-projection operators is LMAX = 6
number of lm-projection operators is LMMAX = 18

Optimization of the real space projectors (new method)

maximal supplied QI-value = 24.76
optimisation between [QCUT,QGAM] = [ 10.15, 20.30] = [ 28.85,115.39] Ry
Optimized for a Real-space Cutoff 1.30 Angstroem

l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline)
0 8 10.150 4.192 0.55E-04 0.58E-04 0.78E-07
0 8 10.150 8.473 0.46E-03 0.68E-03 0.23E-06
1 7 10.150 2.474 0.11E-03 0.93E-04 0.33E-07
1 7 10.150 3.912 0.46E-03 0.50E-03 0.15E-06
Optimization of the real space projectors (new method)

maximal supplied QI-value = 16.25
optimisation between [QCUT,QGAM] = [ 10.24, 20.48] = [ 29.35,117.42] Ry
Optimized for a Real-space Cutoff 1.38 Angstroem

l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline)
2 7 10.239 5.523 0.18E-04 0.65E-04 0.36E-07
2 7 10.239 9.671 0.21E-03 0.50E-03 0.10E-06
0 8 10.239 11.246 0.24E-04 0.13E-04 0.76E-08
0 8 10.239 34.692 0.35E-03 0.73E-04 0.10E-06
1 8 10.239 4.877 0.14E-03 0.16E-03 0.19E-07
1 8 10.239 6.599 0.42E-03 0.61E-03 0.13E-06
PAW_PBE O 08Apr2002 :
energy of atom 1 EATOM= -432.3788
kinetic energy error for atom= 0.1156 (will be added to EATOM!!)
PAW_PBE Zn 06Sep2000 :
energy of atom 2 EATOM=-1749.0928
kinetic energy error for atom= 0.0107 (will be added to EATOM!!)


POSCAR: System=Z
positions in direct lattice
No initial velocities read in
exchange correlation table for LEXCH = 11
RHO(1)= 0.500 N(1) = 2000
RHO(2)= 100.500 N(2) = 4000



--------------------------------------------------------------------------------------------------------


ion position nearest neighbor table
1 0.089 0.087 0.164- 23 1.97 24 1.97 36 2.14
2 0.332 0.040 0.164- 25 1.97 23 1.97
3 0.089 0.179 0.164- 24 1.97 26 1.97 38 2.14
4 0.332 0.133 0.164- 25 1.97 27 1.97 24 1.97
5 0.089 0.272 0.164- 26 1.97 28 1.97 40 2.14
6 0.332 0.226 0.164- 27 1.97 29 1.97 26 1.97
7 0.089 0.365 0.164- 30 1.97 28 1.97 42 2.14
8 0.332 0.319 0.164- 29 1.97 31 1.97 28 1.97
9 0.089 0.458 0.164- 32 1.97 30 1.97 44 2.14
10 0.332 0.412 0.164- 33 1.97 30 1.97 31 1.97
11 0.332 0.504 0.164- 33 1.97 32 1.97
12 0.589 0.087 0.164- 34 1.97 35 1.97 25 2.14
13 0.832 0.040 0.164- 34 1.97 36 1.97
14 0.589 0.179 0.164- 35 1.97 37 1.97 27 2.14
15 0.832 0.133 0.164- 35 1.97 36 1.97 38 1.97
16 0.589 0.272 0.164- 37 1.97 39 1.97 29 2.14
17 0.832 0.226 0.164- 37 1.97 38 1.97 40 1.97
18 0.589 0.365 0.164- 41 1.97 39 1.97 31 2.14
19 0.832 0.319 0.164- 39 1.97 40 1.97 42 1.97
20 0.589 0.458 0.164- 43 1.97 41 1.97 33 2.14
21 0.832 0.412 0.164- 44 1.97 41 1.97 42 1.97
22 0.832 0.504 0.164- 43 1.97 44 1.97
23 0.170 0.040 0.209- 1 1.97 2 1.97
24 0.170 0.133 0.209- 1 1.97 3 1.97 4 1.97
25 0.413 0.087 0.209- 2 1.97 4 1.97 12 2.14
26 0.170 0.226 0.209- 3 1.97 5 1.97 6 1.97
27 0.413 0.179 0.209- 4 1.97 6 1.97 14 2.14
28 0.170 0.319 0.209- 7 1.97 8 1.97 5 1.97
29 0.413 0.272 0.209- 6 1.97 8 1.97 16 2.14
30 0.170 0.412 0.209- 7 1.97 10 1.97 9 1.97
31 0.413 0.365 0.209- 8 1.97 10 1.97 18 2.14
32 0.170 0.504 0.209- 9 1.97 11 1.97
33 0.413 0.458 0.209- 10 1.97 11 1.97 20 2.14
34 0.670 0.040 0.209- 13 1.97 12 1.97
35 0.670 0.133 0.209- 15 1.97 14 1.97 12 1.97
36 0.913 0.087 0.209- 13 1.97 15 1.97 1 2.14
37 0.670 0.226 0.209- 17 1.97 16 1.97 14 1.97
38 0.913 0.179 0.209- 15 1.97 17 1.97 3 2.14
39 0.670 0.319 0.209- 19 1.97 18 1.97 16 1.97
40 0.913 0.272 0.209- 17 1.97 19 1.97 5 2.14
41 0.670 0.412 0.209- 18 1.97 21 1.97 20 1.97
42 0.913 0.365 0.209- 19 1.97 21 1.97 7 2.14
43 0.670 0.504 0.209- 20 1.97 22 1.97
44 0.913 0.458 0.209- 21 1.97 22 1.97 9 2.14

LATTYP: Found a simple orthorhombic cell.
ALAT = 11.6000000000
B/A-ratio = 1.1724137931
C/A-ratio = 3.0172413793

Lattice vectors:

A1 = ( -11.6000000000, 0.0000000000, 0.0000000000)
A2 = ( 0.0000000000, 0.0000000000, -13.6000000000)
A3 = ( 0.0000000000, -35.0000000000, 0.0000000000)
Subroutine PRICEL returns following result:

LATTYP: Found a simple orthorhombic cell.
ALAT = 5.8000000000
B/A-ratio = 2.3448275862
C/A-ratio = 6.0344827586

Lattice vectors:

A1 = ( -5.8000000000, 0.0000000000, 0.0000000000)
A2 = ( 0.0000000000, 0.0000000000, -13.6000000000)
A3 = ( 0.0000000000, -35.0000000000, 0.0000000000)

2 primitive cells build up your supercell.


Analysis of symmetry for initial positions (statically):

Routine SETGRP: Setting up the symmetry group for a
simple orthorhombic supercell.


Subroutine GETGRP returns: Found 2 space group operations
(whereof 1 operations were pure point group operations)
out of a pool of 8 trial point group operations.


The static configuration has the point symmetry C_1 .
The point group associated with its full space group is C_1h.

Analysis of symmetry for dynamics (positions and initial velocities):

Subroutine DYNSYM returns: Found 2 space group operations
(whereof 1 operations were pure point group operations)
out of a pool of 2 trial space group operations
(whereof 1 operations were pure point group operations)
and found also 2 'primitive' translations


The dynamic configuration has the point symmetry C_1 .
The point group associated with its full space group is C_1h.

Analysis of magnetic symmetry:

Subroutine MAGSYM returns: Found 2 space group operations
(whereof 1 operations were pure point group operations)
out of a pool of 2 trial space group operations
(whereof 1 operations were pure point group operations)
and found also 2 'primitive' translations


The magnetic configuration has the point symmetry C_1 .
The point group associated with its full space group is C_1h.


KPOINTS: Automomatic mesh

Automatic generation of k-mesh.

Subroutine IBZKPT returns following result:
===========================================

Found 7 irreducible k-points:

Following reciprocal coordinates:
Coordinates Weight
0.000000 0.000000 0.000000 1.000000
0.076923 0.000000 0.000000 2.000000
0.153846 0.000000 0.000000 2.000000
0.230769 0.000000 0.000000 2.000000
0.307692 0.000000 0.000000 2.000000
0.384615 0.000000 0.000000 2.000000
0.461538 0.000000 0.000000 2.000000

Following cartesian coordinates:
Coordinates Weight
0.000000 0.000000 0.000000 1.000000
0.006631 0.000000 0.000000 2.000000
0.013263 0.000000 0.000000 2.000000
0.019894 0.000000 0.000000 2.000000
0.026525 0.000000 0.000000 2.000000
0.033156 0.000000 0.000000 2.000000
0.039788 0.000000 0.000000 2.000000



--------------------------------------------------------------------------------------------------------




Dimension of arrays:
k-points NKPTS = 7 k-points in BZ NKDIM = 7 number of bands NBANDS= 264
number of dos NEDOS = 301 number of ions NIONS = 44
non local maximal LDIM = 6 non local SUM 2l+1 LMDIM = 18
total plane-waves NPLWV = 756000
max r-space proj IRMAX = 1558 max aug-charges IRDMAX= 4280
dimension x,y,z NGX = 60 NGY = 180 NGZ = 70
dimension x,y,z NGXF= 120 NGYF= 360 NGZF= 140
support grid NGXF= 120 NGYF= 360 NGZF= 140
ions per type = 22 22
NGX,Y,Z is equivalent to a cutoff of 8.60, 8.55, 8.56 a.u.
NGXF,Y,Z is equivalent to a cutoff of 17.20, 17.10, 17.11 a.u.


I would recommend the setting:
dimension x,y,z NGX = 57 NGY = 171 NGZ = 67
SYSTEM = Z
POSCAR = System=Z

Startparameter for this run:
NWRITE = 2 write-flag & timer
PREC = normal medium, high low
ISTART = 0 job : 0-new 1-cont 2-samecut
ICHARG = 2 charge: 1-file 2-atom 10-const
ISPIN = 2 spin polarized calculation?
LNONCOLLINEAR = F non collinear calculations
LSORBIT = F spin-orbit coupling
INIWAV = 1 electr: 0-lowe 1-rand 2-diag
LASPH = F aspherical Exc in radial PAW
METAGGA= F non-selfconsistent MetaGGA calc.

Electronic Relaxation 1
ENCUT = 400.0 eV 29.40 Ry 5.42 a.u. 18.92 57.08 22.18*2*pi/ulx,y,z
ENINI = 400.0 initial cutoff
ENAUG = 605.4 eV augmentation charge cutoff
NELM = 100; NELMIN= 2; NELMDL= -5 # of ELM steps
EDIFF = 0.1E-04 stopping-criterion for ELM
LREAL = T real-space projection
LCOMPAT= F compatible to vasp.4.4
LREAL_COMPAT= F compatible to vasp.4.5.1-3
GGA_COMPAT = T GGA compatible to vasp.4.4-vasp.4.6
LMAXPAW = -100 max onsite density
LMAXMIX = 2 max onsite mixed and CHGCAR
VOSKOWN= 1 Vosko Wilk Nusair interpolation
ROPT = -0.00050 -0.00050
Ionic relaxation
EDIFFG = -.2E-01 stopping-criterion for IOM
NSW = 150 number of steps for IOM
NBLOCK = 1; KBLOCK = 150 inner block; outer block
IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG
NFREE = 1 steps in history (QN), initial steepest desc. (CG)
ISIF = 2 stress and relaxation
IWAVPR = 11 prediction: 0-non 1-charg 2-wave 3-comb
ISYM = 2 0-nonsym 1-usesym 2-fastsym
LCORR = T Harris-Foulkes like correction to forces

POTIM = 0.5000 time-step for ionic-motion
TEIN = 0.0 initial temperature
TEBEG = 0.0; TEEND = 0.0 temperature during run
SMASS = -3.00 Nose mass-parameter (am)
estimated Nose-frequenzy (Omega) = 0.10E-29 period in steps =****** mass= -0.308E-26a.u.
NPACO = 256; APACO = 16.0 distance and # of slots for P.C.
PSTRESS= 0.0 pullay stress

Mass of Ions in am
POMASS = 16.00 65.39
Ionic Valenz
ZVAL = 6.00 12.00
Atomic Wigner-Seitz radii
RWIGS = -1.00 -1.00
NELECT = 396.0000 total number of electrons
NUPDOWN= -1.0000 fix difference up-down

DOS related values:
EMIN = 10.00; EMAX =-10.00 energy-range for DOS
EFERMI = 0.00
ISMEAR = 0; SIGMA = 0.10 broadening in eV -4-tet -1-fermi 0-gaus

Electronic relaxation 2 (details)
IALGO = 68 algorithm
LDIAG = T sub-space diagonalisation
IMIX = 4 mixing-type and parameters
AMIX = 0.40; BMIX = 1.00
AMIX_MAG = 1.60; BMIX_MAG = 1.00
AMIN = 0.10
WC = 100.; INIMIX= 1; MIXPRE= 1

Intra band minimization:
WEIMIN = 0.0010 energy-eigenvalue tresh-hold
EBREAK = 0.97E-08 absolut break condition
DEPER = 0.30 relativ break condition

TIME = 0.40 timestep for ELM

volume/ion in A,a.u. = 125.49 846.85
Fermi-wavevector in a.u.,A,eV,Ry = 0.680171 1.285337 6.294502 0.462633
Thomas-Fermi vector in A = 1.758584

Write flags
LWAVE = T write WAVECAR
LCHARG = T write CHGCAR
LVTOT = F write LOCPOT, local potential
LELF = F write electronic localiz. function (ELF)
LORBIT = 0 0 simple, 1 ext, 2 COOP (PROOUT)


Dipole corrections
LMONO = F monopole corrections only (constant potential shift)
LDIPOL = F correct potential (dipole corrections)
IDIPOL = 0 1-x, 2-y, 3-z, 4-all directions
EPSILON= 1.0000000 bulk dielectric constant

Exchange correlation treatment:
GGA = B3 GGA type
LEXCH = 11 internal setting for exchange type
VOSKOWN= 1 Vosko Wilk Nusair interpolation
LHFCALC = F Hartree Fock is set to
LHFONE = F Hartree Fock one center treatment
AEXX = 0.0000 exact exchange contribution

Linear response parameters
LEPSILON= F determine dielectric tensor
LRPA = F only Hartree local field effects (RPA)
LNABLA = F use nabla operator in PAW spheres
LVEL = F velocity operator in full k-point grid
LINTERFAST= F fast interpolation
KINTER = 0 interpolate to denser k-point grid
CSHIFT =0.1000 complex shift for real part using Kramers Kronig
OMEGAMAX= -1.0 maximum frequency

Orbital magnetization related:
ORBITALMAG= F switch on orbital magnetization
LCHIMAG = F perturbation theory with respect to B field



--------------------------------------------------------------------------------------------------------


conjugate gradient relaxation of ions
charge density and potential will be updated during run
spin polarized calculation
RMM-DIIS sequential band-by-band and
variant of blocked Davidson during initial phase
perform sub-space diagonalisation
before iterative eigenvector-optimisation
modified Broyden-mixing scheme, WC = 100.0
initial mixing is a Kerker type mixing with AMIX = 0.4000 and BMIX = 1.0000
Hartree-type preconditioning will be used
using additional bands 66
real space projection scheme for non local part
use partial core corrections
calculate Harris-corrections to forces
(improved forces if not selfconsistent)
use gradient corrections
use of overlap-Matrix (Vanderbilt PP)
Gauss-broadening in eV SIGMA = 0.10


--------------------------------------------------------------------------------------------------------


energy-cutoff : 400.00
volume of cell : 5521.60
direct lattice vectors reciprocal lattice vectors
11.600000000 0.000000000 0.000000000 0.086206897 0.000000000 0.000000000
0.000000000 35.000000000 0.000000000 0.000000000 0.028571429 0.000000000
0.000000000 0.000000000 13.600000000 0.000000000 0.000000000 0.073529412

length of vectors
11.600000000 35.000000000 13.600000000 0.086206897 0.028571429 0.073529412



k-points in units of 2pi/SCALE and weight: Automomatic mesh
0.00000000 0.00000000 0.00000000 0.077
0.00663130 0.00000000 0.00000000 0.154
0.01326260 0.00000000 0.00000000 0.154
0.01989390 0.00000000 0.00000000 0.154
0.02652520 0.00000000 0.00000000 0.154
0.03315650 0.00000000 0.00000000 0.154
0.03978780 0.00000000 0.00000000 0.154

k-points in reciprocal lattice and weights: Automomatic mesh
0.00000000 0.00000000 0.00000000 0.077
0.07692308 0.00000000 0.00000000 0.154
0.15384615 0.00000000 0.00000000 0.154
0.23076923 0.00000000 0.00000000 0.154
0.30769231 0.00000000 0.00000000 0.154
0.38461538 0.00000000 0.00000000 0.154
0.46153846 0.00000000 0.00000000 0.154

position of ions in fractional coordinates (direct lattice)
0.08914513 0.08662195 0.16415731
0.33172706 0.04020381 0.16415731
0.08914513 0.17945824 0.16415731
0.33172706 0.13304010 0.16415731
0.08914513 0.27229453 0.16415731
0.33172706 0.22587638 0.16415731
0.08914513 0.36513081 0.16415731
0.33172706 0.31871267 0.16415731
0.08914513 0.45796710 0.16415731
0.33172706 0.41154895 0.16415731
0.33172706 0.50438524 0.16415731
0.58914513 0.08662195 0.16415731
0.83172706 0.04020381 0.16415731
0.58914513 0.17945824 0.16415731
0.83172706 0.13304010 0.16415731
0.58914513 0.27229453 0.16415731
0.83172706 0.22587638 0.16415731
0.58914513 0.36513081 0.16415731
0.83172706 0.31871267 0.16415731
0.58914513 0.45796710 0.16415731
0.83172706 0.41154895 0.16415731
0.83172706 0.50438524 0.16415731
0.17000578 0.04020381 0.20909251
0.17000578 0.13304010 0.20909251
0.41258770 0.08662195 0.20909251
0.17000578 0.22587638 0.20909251
0.41258770 0.17945824 0.20909251
0.17000578 0.31871267 0.20909251
0.41258770 0.27229453 0.20909251
0.17000578 0.41154895 0.20909251
0.41258770 0.36513081 0.20909251
0.17000578 0.50438524 0.20909251
0.41258770 0.45796710 0.20909251
0.67000578 0.04020381 0.20909251
0.67000578 0.13304010 0.20909251
0.91258770 0.08662195 0.20909251
0.67000578 0.22587638 0.20909251
0.91258770 0.17945824 0.20909251
0.67000578 0.31871267 0.20909251
0.91258770 0.27229453 0.20909251
0.67000578 0.41154895 0.20909251
0.91258770 0.36513081 0.20909251
0.67000578 0.50438524 0.20909251
0.91258770 0.45796710 0.20909251

position of ions in cartesian coordinates (Angst):
1.03408355 3.03176838 2.23253944
3.84803391 1.40713338 2.23253944
1.03408355 6.28103838 2.23253944
3.84803391 4.65640338 2.23253944
1.03408355 9.53030838 2.23253944
3.84803391 7.90567338 2.23253944
1.03408355 12.77957838 2.23253944
3.84803391 11.15494338 2.23253944
1.03408355 16.02884838 2.23253944
3.84803391 14.40421338 2.23253944
3.84803391 17.65348338 2.23253944
6.83408355 3.03176838 2.23253944
9.64803391 1.40713338 2.23253944
6.83408355 6.28103838 2.23253944
9.64803391 4.65640338 2.23253944
6.83408355 9.53030838 2.23253944
9.64803391 7.90567338 2.23253944
6.83408355 12.77957838 2.23253944
9.64803391 11.15494338 2.23253944
6.83408355 16.02884838 2.23253944
9.64803391 14.40421338 2.23253944
9.64803391 17.65348338 2.23253944
1.97206700 1.40713338 2.84365809
1.97206700 4.65640338 2.84365809
4.78601737 3.03176838 2.84365809
1.97206700 7.90567338 2.84365809
4.78601737 6.28103838 2.84365809
1.97206700 11.15494338 2.84365809
4.78601737 9.53030838 2.84365809
1.97206700 14.40421338 2.84365809
4.78601737 12.77957838 2.84365809
1.97206700 17.65348338 2.84365809
4.78601737 16.02884838 2.84365809
7.77206700 1.40713338 2.84365809
7.77206700 4.65640338 2.84365809
10.58601737 3.03176838 2.84365809
7.77206700 7.90567338 2.84365809
10.58601737 6.28103838 2.84365809
7.77206700 11.15494338 2.84365809
10.58601737 9.53030838 2.84365809
7.77206700 14.40421338 2.84365809
10.58601737 12.77957838 2.84365809
7.77206700 17.65348338 2.84365809
10.58601737 16.02884838 2.84365809



--------------------------------------------------------------------------------------------------------


k-point 1 : 0.00000.00000.0000 plane waves: 100247
k-point 2 : 0.07690.00000.0000 plane waves: 100253
k-point 3 : 0.15380.00000.0000 plane waves: 100228
k-point 4 : 0.23080.00000.0000 plane waves: 100276
k-point 5 : 0.30770.00000.0000 plane waves: 100300
k-point 6 : 0.38460.00000.0000 plane waves: 100352
k-point 7 : 0.46150.00000.0000 plane waves: 100410

maximum and minimum number of plane-waves per node : 100410 100228

maximum number of plane-waves: 100410
maximal index in each direction:
IXMAX= 18 IYMAX= 57 IZMAX= 22
IXMIN=-19 IYMIN=-57 IZMIN=-22

WARNING: aliasing errors must be expected set NGX to 76 to avoid them
WARNING: aliasing errors must be expected set NGY to 230 to avoid them
WARNING: aliasing errors must be expected set NGZ to 90 to avoid them
aliasing errors are usually negligible using standard VASP settings
and one can safely disregard these warnings

serial 3D FFT for wavefunctions
parallel 3D FFT for charge:
minimum data exchange during FFTs selected (reduces bandwidth)


total amount of memory used by VASP on root node1021584. kBytes
========================================================================

base : 30000. kBytes
nonlr-proj: 8145. kBytes
fftplans : 28871. kBytes
grid : 206668. kBytes
one-center: 1368. kBytes
wavefun : 746532. kBytes

Broyden mixing: mesh for mixing (old mesh)
NGX = 37 NGY =115 NGZ = 45
(NGX =120 NGY =360 NGZ =140)
gives a total of 191475 points

initial charge density was supplied:
charge density of overlapping atoms calculated
number of electron 396.0000000 magnetization 44.0000000
keeping initial charge density in first step


--------------------------------------------------------------------------------------------------------


Maximum index for non-local projection operator 1470
Maximum index for augmentation-charges 508 (set IRDMAX)


--------------------------------------------------------------------------------------------------------


First call to EWALD: gamma= 0.100
Maximum number of real-space cells 4x 2x 3
Maximum number of reciprocal cells 2x 5x 2

FEWALD: cpu time 0.01: real time 0.01
RESPFUN: cpu time 0.00: real time 0.00


----------------------------------------- Iteration 1( 1) ---------------------------------------


POTLOK: cpu time 9.41: real time 9.65
SETDIJ: cpu time 0.13: real time 0.13
Last edited by ljx2009 on Mon Jun 07, 2010 8:53 am, edited 1 time in total.

panda

why it is not correct?

#2 Post by panda » Mon Jun 07, 2010 4:40 pm

can you post your error file? or your log file from the run? We store our error files as .err but depending on how you have your runscript set up you might store it differently. At any rate we can't help you if we can't see the error, as what you have posted is simply an incomplete log or output file.
Last edited by panda on Mon Jun 07, 2010 4:40 pm, edited 1 time in total.

alex
Hero Member
Hero Member
Posts: 586
Joined: Tue Nov 16, 2004 2:21 pm
License Nr.: 5-67
Location: Germany

why it is not correct?

#3 Post by alex » Tue Jun 08, 2010 8:10 am

It's probably too large for your computer.

alex
Last edited by alex on Tue Jun 08, 2010 8:10 am, edited 1 time in total.

cmuhich
Newbie
Newbie
Posts: 10
Joined: Thu Feb 24, 2011 7:54 pm
Location: Boulder, Co, USA

why it is not correct?

#4 Post by cmuhich » Thu Feb 24, 2011 8:22 pm

I have the same problem, the job crashes with out any errors, but i have the last line being the EDDIAG line as in:

POTLOK: cpu time 0.37: real time 0.37
SETDIJ: cpu time 0.06: real time 0.06
EDDIAG: cpu time 4.70: real time 4.70

I have found that if i lower the cutoff energy the job will run, and if i use different algorithms, the maximum working cutoff changes. Is there any parameters that i need to change in the compilation to increase say an array size to allow for larger cutoff energies?

Also if i increase the FFT grid from the pre-determined grid to the suggested grid the job crashes.

Any advise would be very helpful
Last edited by cmuhich on Thu Feb 24, 2011 8:22 pm, edited 1 time in total.

alex
Hero Member
Hero Member
Posts: 586
Joined: Tue Nov 16, 2004 2:21 pm
License Nr.: 5-67
Location: Germany

why it is not correct?

#5 Post by alex » Fri Feb 25, 2011 7:35 am

check the memory usage when HF starts.
Last edited by alex on Fri Feb 25, 2011 7:35 am, edited 1 time in total.

cmuhich
Newbie
Newbie
Posts: 10
Joined: Thu Feb 24, 2011 7:54 pm
Location: Boulder, Co, USA

why it is not correct?

#6 Post by cmuhich » Sun Feb 27, 2011 10:45 pm

The RAM usage is only about 1.6 Gigs (about only 5% of the available ram). job's that run and dont run both spin up to about 5%. Then the ones that fail crash, but the ones that continue to run do not increase memory usage much
Last edited by cmuhich on Sun Feb 27, 2011 10:45 pm, edited 1 time in total.

alex
Hero Member
Hero Member
Posts: 586
Joined: Tue Nov 16, 2004 2:21 pm
License Nr.: 5-67
Location: Germany

why it is not correct?

#7 Post by alex » Mon Feb 28, 2011 7:44 am

The latter behaviour I have never seen. Hybrid-DFT calc. takes a huge amount of memory in comparison to plain DFT. Normally (no previous WAVECAR & CHGCAR present) you start with 5 cycles DFT only and then hybrid-DFT starts. And I observed timing differences up to factor ~100 slower.
Or: you own a 32-bit system.
Or: post all input files.

Cheers,

alex
Last edited by alex on Mon Feb 28, 2011 7:44 am, edited 1 time in total.

cmuhich
Newbie
Newbie
Posts: 10
Joined: Thu Feb 24, 2011 7:54 pm
Location: Boulder, Co, USA

why it is not correct?

#8 Post by cmuhich » Mon Feb 28, 2011 3:48 pm

Hi Alex,

We have a 64-bit system that is 32-bit compatible.

Here are my INCAR and KPOINT cards. Would you like the POS and POT Car? They both work for the lower cutoff energies and are very large

System = 224 atom Fe3O4
IALGO = 48
LREAL = Auto
NWRITE = 4
ISTART = 0
ICHARG = 2

ENCUT = 450

ISMEAR = 0
SIGMA = 0.1


IBRION = -1
NSW = 0


K-Point
1
Dir
0 0 0 1
Last edited by cmuhich on Mon Feb 28, 2011 3:48 pm, edited 1 time in total.

cmuhich
Newbie
Newbie
Posts: 10
Joined: Thu Feb 24, 2011 7:54 pm
Location: Boulder, Co, USA

why it is not correct?

#9 Post by cmuhich » Tue Mar 01, 2011 12:24 am

Hi I figured it out, there was a stacking memory problem
needed to set

ulimit -s to unlimited
Last edited by cmuhich on Tue Mar 01, 2011 12:24 am, edited 1 time in total.

alex
Hero Member
Hero Member
Posts: 586
Joined: Tue Nov 16, 2004 2:21 pm
License Nr.: 5-67
Location: Germany

why it is not correct?

#10 Post by alex » Tue Mar 01, 2011 9:44 am

Good! I get an error message if something is limited to a too small size.
Last edited by alex on Tue Mar 01, 2011 9:44 am, edited 1 time in total.

Post Reply